Геодезия что это такое

 

Какие приборы используются в геодезии? Что регулируют СНиП при проведении геодезических работ в строительстве? Какие услуги включают в себя топографо-геодезические и разбивочные работы?. Геодезия.

Что такое геодезия

Геодезия - это наука, которая занимается методами точных измерений элементов поверхности земли и их обработкой для определения географических положений на поверхности земли. Это также имеет дело с теорией размера и формы земли.

Геодезия - это техника, профессия и наука определения наземного или трехмерного положения точек, а также расстояний и углов между ними. Специалист по землеустройству называется землеустроителем. Эти точки обычно находятся на поверхности Земли, и они часто используются для установления карт местности и границ владения, таких мест, как углы зданий, или местоположения недр, или других целей, требуемых государственным или гражданским законодательством, таких как собственность продажи.

Геодезисты работают с элементами математики (геометрия и тригонометрия), физики, техники и права. Они используют оборудование, такое как тахеометры, роботизированные тахеометры, GPS-приемники, призмы, 3D-сканеры, радиоприемники, портативные планшеты, цифровые уровни и программное обеспечение для съемки.

Геодезия является элементом развития человеческой среды с начала истории человечества. Планирование и выполнение большинства форм строительства требуют этого. Она также используется в транспорте, связи, картографии и определении правовых границ для владения землей.

Основы геодезии включают опорные системы, определение опорных областей и картографических проекционных систем и их реализацию в виде геоидальных моделей, систем управления и постоянных сетей GNSS. Они используются для приведения пространственных данных (геоданных) всех типов в гармонию с однозначной и точной геометрической корреляцией с европейскими и глобальными системами отсчета. Благодаря геодезическим критериям и справочным данным для национальной инфраструктуры геоданных, можно изобразить геоданные и их национальную и международную взаимозаменяемость однородным образом.

Геодезическая система отсчета определяет пространственную систему координат (начало и ориентация осей координат) для указания пространственных положений (местоположение, высота) и гравитации точек.

Постоянные станции GNSS формируют современные ориентиры для определения местоположения и съемки. Приемники GNSS, расположенные на нескольких тысячах станций по всему миру.

В дополнение к обычным процедурам съемки, а именно триангуляции и нивелирования, съемка с использованием технологии GNSS играет центральную роль.

Определение географического положения на поверхности Земли может быть сделано путем наблюдения небесных тел и, таким образом, подпадает под геодезическую астрономию, но это может быть включено в геометрическую геодезию.

Гравитационное поле Земли является физическим объектом и участвует в большинстве геодезических измерений, даже чисто геометрических. Измерения геодезической астрономии, триангуляции и нивелирования, все существенно используют отвесную линию, являющуюся вектором направления гравитации. Таким образом, астрогеодезические методы, в которых используется астрологическое определение широты, долготы и азимутальных и геодезических операций, например триангуляция, трилатерация, измерение базы и т. д., могут рассматриваться как принадлежащие к физической геодезии в той же степени, что и гравиметрические методы.

Спутниковая геодезия включает в себя методы наблюдений и вычислений, которые позволяют решать геодезические задачи путем использования точных измерений в направлении.

Особо следует отметить, что геодезия служит обществу, предоставляя ориентиры для широкого спектра практических применений, таких как навигация по суше, морю и в воздухе, создание инфраструктуры и определение надежных границ для объектов недвижимости или даже морских зон. В прошлом такие системы отсчета создавались на национальном или региональном уровне. Сегодня благодаря использованию существующих и планируемых глобальных навигационных спутниковых систем (GNSS), таких как GPS, Glonass, Galileo и Compass/BeiDou, геодезия обеспечивает доступ к координатам точек в глобальной системе координат в любое время и в любом месте на поверхности Земли.

Благодаря существенному улучшению геодезических приборов и методов в настоящее время, геодезия стала больше заботиться об изменениях «геометрии» и «гравиметрии» элементов на поверхности, под или над поверхностью твердой Земли и океанов, чем это было ранее. В прошлом основными «клиентами» геодезии были геодезические, картографические и геопространственные дисциплины, тогда как сегодня геодезия обслуживает все науки о Земле, включая геофизические, океанографические, атмосферные, гидрологические и экологические научные сообщества. Геодезические «продукты» не только способствуют нашему пониманию Земли, но и приносят пользу многим общественным мероприятиям, начиная от предотвращения и смягчения последствий стихийных бедствий до защиты биосферы и окружающей среды.

Международная ассоциация геодезии является научной организацией, ответственной за геодезию. Является членом ассоциации Международного союза геодезии и геофизики.

Разделы геодезии и виды геодезических работ.

Фото 2

Область геодезических знаний делится на высшую геодезию и геодезию, которые сами подразделяются на более или менее самостоятельные разделы. Основной задачей высшей геодезии является определение фигуры, размеров и гравитационного поля Земли, а также изучение теорий и методов её решения. В задачи высшей геодезии входит также изучение теорий и методов основных геодезических работ, служащих для построения опорной геодезической сети и доставляющих данные для решения научных и практических задач геодезии. Геодезическая сеть представляет систему надлежаще выбранных и закрепленных на земной поверхности точек, называемых опорными геодезическими пунктами, взаимные положения и высоты которых определены в принятой системе координат и счёта высот. Положения опорных геодезических пунктов определяют преимущественно методом триангуляции, в основе которой лежит тригонометрический принцип измерения расстояний. Метод триангуляции состоит в построении на местности рядов и сетей треугольников, последовательно связанных между собой общими сторонами. Измерив в каком-нибудь из треугольников (рис. 2) одну сторону, называемую базисом или базисной стороной, и в каждом из них не менее 2 углов, длины сторон всех треугольников определяют путём тригонометрических вычислений. Обычно в каждом треугольнике измеряют все 3 угла, а в любой триангуляции, покрывающей значительную территорию, измеряют большое количество базисов, которые размещаются на определённом расстоянии друг от друга. Для построения геодезической сети применяется и метод полигонометрии, который состоит в измерении на местности длин последовательно связанных между собой линий, образующих полигонометрический ход, и горизонтальных углов между ними. Зная положение одного пункта и направление одной связанной с ним линии полигонометрического хода, путём вычислений последовательно определяют положение всех пунктов хода в принятой системе координат. Иногда положение опорных геодезических пунктов определяют методом трилатерации, измеряя все три стороны всех треугольников, образующих геодезическую сеть.

Геодезические пункты располагаются на возвышенных точках местности, которые выбирают рекогносцировкой. Каждый пункт закрепляется на местности закладкой на некоторую глубину бетонного блока с вделанной в него маркой, обозначающей вершину треугольника (см. Центр геодезический) (рис. 3), и постройкой деревянной или металлической вышки, служащей штативом для угломерного инструмента и визирной целью при измерении углов (см. Сигнал геодезический) (рис. 4). Иногда геодезические пункты совмещаются с наиболее выделяющимися местными предметами, такими, как водонапорные башни, шпили высоких зданий и т. и.

В зависимости от последовательности построения и точности измерений геодезической сети подразделяются на классы. Так, государственная геодезическая сеть СССР делится на I, II, III и IV классы. Государственная триангуляция I класса в СССР строится из рядов приблизительно равносторонних треугольников со сторонами 20—25 км, расположенных примерно по направлению земных меридианов и параллелей через 200—250 км. Пространства, ограниченные рядами триангуляции I класса, покрываются сплошными сетями треугольников II класса со сторонами около 10—20 км. Дальнейшее сгущение сети геодезических пунктов производится построением треугольников III и IV классов.

В местах пересечения рядов триангуляции I класса и в сетях триангуляции II класса измеряют базисы длиной не менее 5—6 км или базисные стороны. Базисы измеряют мерными проволоками (см. Базисный прибор) путём последовательного откладывания их по линии базиса, причём ошибки измерений не превышают 1:1000000 доли длины базиса. Базисные стороны измеряют непосредственно электрооптическими дальномерами с ошибкой не более 1:400000. Для измерения линий в полигонометрических ходах и сторон треугольников в трилатерации применяют также радиодальномеры.

Углы треугольников и углы поворота полигонометрических ходов измеряют при помощи угломерных геодезических инструментов, представляющих собой сложные оптико-механические устройства. При этом под углом между направлениями на 2 наблюдаемых предмета в данной точке понимается угол между плоскостями, проходящими через эти предметы и отвесную линию в данной точке. Погрешности измерений углов треугольников в триангуляции I и II классов обычно не превышают 0,7».

Для построения сети опорных геодезических пунктов и определения их положения используют также результаты наблюдений за движением искусственных спутников Земли. Наблюдения спутника состоят либо в фотографировании его на фоне звёзд, положения которых известны, либо в измерениях расстояний до него с точек стояния при помощи радиотехнических средств или же в выполнении тех и других операций одновременно. Если законы движения спутника хорошо изучены, то он в этом случае служит подвижным геодезическим пунктом, координаты которого на каждый данный момент времени известны. Если же законы движения спутника не изучены, то он служит лишь промежуточным геодезическим пунктом, так что для определения неизвестной точки земной поверхности наблюдения спутника необходимо выполнять строго одновременно как в этой точке, так и в нескольких известных геодезических пунктах. Рассмотрение теорий и методов использования спутников для решения научных и практических задач геодезии составляет содержание спутниковой геодезии.

В конечных точках базисов и базисных сторон триангуляции I и II классов определяют широту и долготу этих точек, а также азимут направления на избранный земной предмет путём астрономических наблюдений (см. Лапласов пункт). Астрономические широты и долготы определяют также на промежуточных пунктах триангуляции I класса, выбираемых не реже чем 70—100 км. Астрономические определения на пунктах опорной геодезической сети превращают её в астрономо-геодезическую сеть, которая доставляет основные данные для исследований фигуры и размеров Земли и служит для распространения единой системы координат на всю территорию страны. Рассмотрение теории и методов определения географического положения места из астрономических наблюдений относится к геодезической астрономии.

Плановое положение геодезических пунктов определяют геодезическими координатами, а именно I — широтами и долготами их проекций на поверхность некоторого земного эллипсоида — референц-эллипсоида. В каждом геодезическом пункте вместе с его координатами определяют также направления на смежные пункты относительно меридиана. Эти направления называют геодезическими азимутами и служат для ориентировки на местности.

Геодезические координаты одного из пунктов, являющегося исходным пунктом опорной геодезической сети, и геодезический азимут направления на один из смежных с ним пунктов устанавливают определением его астрономических координат и астрономического азимута того же направления исправлением их за влияние отклонения отвеса. Полученные данные, а также высота геоида над поверхностью референц-эллипсоида в исходном пункте характеризуют положение принятого эллипсоида в теле Земли и называются исходными геодезическими датами. Геодезические координаты и азимуты остальных пунктов получают путём вычисления по результатам геодезических измерений, приведённых к поверхности референц-эллипсоида.

Для вычисления координат пунктов государственной геодезической сети СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид), который характеризуется следующими данными:

большая полуось а = 6 37 8 245 м,
полярное сжатие α = 1:298,3,

а исходным пунктом служит Пулковская астрономическая обсерватория (центр её Круглого зала), причём для неё приняты следующие геодезические координаты:

широта В = 59° 4618,55»,
долгота L=30°19'42,09»,

полученные путём исправления её астрономической широты и долготы за влияние отклонения отвесной линии от нормали к поверхности эллипсоида Красовского. Высота геоида в Пулково над поверхностью этого эллипсоида принята равной нулю.

Один из разделов высшей геодезии рассматривает геометрию земного эллипсоида и называется сфероидической геодезией. В её задачи входит разработка методов приведения геодезических измерений к поверхности референц-эллипсоида, методов решения треугольников и вычисления координат опорных пунктов на этой поверхности. Сфероидическая геодезия даёт и математические основы методов определения фигуры и размеров Земли из градусных измерений.

Приведение геодезических измерений к поверхности референц-эллипсоида состоит в проектировании соответствующих пунктов на эту поверхность нормалями к ней. Это достигается тем, что в результаты геодезических измерений, например в длины линий и величины углов, вводятся поправки за высоту земной поверхности над поверхностью референц-эллипсоида и отклонения отвесной линии в определяемых пунктах.

Проекции определяемых пунктов на поверхности референц-эллипсоида соединяют геодезическими линиями, а их координаты получают последовательным вычислением и суммированием разностей координат каждых 2 смежных пунктов по длине и направлению соединяющей их геодезической линии (см. Геодезическая задача). Так как геодезические координаты выражаются в угловой мере и для практических целей неудобны, то они обычно заменяются прямоугольными координатами на плоскости путём отображения на ней поверхности референц-эллипсоида по тому или иному математическому закону точечного соответствия (см. Геодезические проекции). Сфероидическая геодезия рассматривает теории отображения на плоскость только ограниченных частей поверхности земного эллипсоида. Отображение же всей поверхности земного эллипсоида на плоскость для построения географических карт рассматривается в математической картографии (см. Картографические проекции).

Высоты опорных геодезических пунктов определяют методами геометрического нивелирования, которое состоит в измерении и суммировании разностей высот каждых двух последовательных точек, расположенных на расстоянии (в зависимости от класса) 100—300 м одна от другой по некоторой линии, образующей нивелирный ход. Разности высот определяют нивелиром как разность отсчётов по имеющим точные деления рейкам, когда они установлены по отвесу, а визирная линия трубы нивелира строго горизонтальна. Линии геометрического нивелирования в зависимости от последовательности и точности выполнения работы подразделяются на классы.

В СССР нивелирование 1 класса производится по особо намеченным линиям, образующим замкнутые полигоны с периметром около 1600 км, и выполняется с наивысшей точностью, достижимой при применении современных инструментов и методов работы. Так, по линиям I класса случайная ошибка нивелирования не превышает 0,5 мм и систематическая ошибка составляет всего лишь 0,03 мм на 1 км нивелирного хода. Нивелирная сеть II класса строится из линий, прокладываемых вдоль железных, шоссейных, грунтовых дорог и больших рек и образующих замкнутые полигоны с периметром около 600 км. По линиям нивелирования II класса разности высот определяются со средней случайной ошибкой не более 1 мм и систематической — не более 0,2 мм на 1 км нивелирной линии. Нивелирные сети I и II классов сгущаются линиями нивелирования III и IV классов.

Линии нивелирования всех классов закрепляются на местности реперами или марками, которые закладываются через каждые 3—5 км в грунт, стены каменных зданий (рис. 5) и т. д. На линиях нивелирования I, II и III классов через 50—80 км и в местах их пересечения закладывают так называемые фундаментальные реперы, рассчитанные на долговременную сохранность. Высоты реперов и марок нивелирования вычисляют в той или иной системе высот над уровнем моря в каком-нибудь исходном пункте. В нивелирных работах СССР принята система нормальных высот, а исходным пунктом служит Кронштадтский футшток, нуль которого совпадает с многолетним средним уровнем Балтийского моря.

Для определения координат и высот пунктов опорной геодезической сети необходимы данные о распределении силы тяжести на земной поверхности. Вопросы измерения силы тяжести рассматриваются в гравиметрии, которая представляет собой самостоятельный раздел геодезических знаний. Методы использования гравиметрических данных для решения научных и практических задач геодезии составляют содержание геодезической гравиметрии, созданной трудами советского учёного М. С. Молоденского.

В области геодезии рассматриваются методы, техника и организация работ, связанных с измерениями на земной поверхности для отображения её на планах и картах. Совокупность этих работ представляет топографическую съёмку местности и поэтому соответствующий раздел геодезии часто называют топографией. В прошлом топографические съёмки производились наземным способом, который теперь применяется для съёмки лишь небольших участков местности. Топографические съёмки значительных площадей земной поверхности производятся путём сплошного фотографирования местности с летательных аппаратов (см. Аэрофотосъёмка) и последующей фотограмметрической обработки аэроснимков (см. Фотограмметрия). Результатом топографических съёмок являются топографические карты, которые служат исходным материалом для составления различных карт в более мелких масштабах. Методы составления и издания всевозможных карт рассматриваются в картографии.

Изучение методов, техники и организации геодезических работ, связанных с проведением различных инженерных мероприятий (строительство гидротехнических сооружений, путей сообщения, крупных высотных зданий, промышленных предприятий и так далее), составляет содержание инженерной геодезии. Рассмотрение аналогичных вопросов, относящихся к строительству шахт, тоннелей и метро, также входит в задачи инженерной геодезии и вместе с тем является составной частью маркшейдерии.

Так как геодезические измерения сопровождаются неизбежными ошибками различного характера, то в геодезии принято каждую величину измерять многократно, а также измерять большее количество величин, чем необходимо для решения данной задачи. Измерение каждой избыточной величины создаёт одно условие, которое связывает её с другими величинами и которое не выполняется из-за их ошибок. Методы оценки точности геодезических измерений изучаются в теории ошибок (см. Наименьших квадратов метод), а приведение геодезических измерений в соответствие с теми математическими условиями, которым они должны удовлетворять, составляет содержание уравнительных вычислений.

Рис. 3. Подземный центр геодезического пункта (разрез).

Рис. 4.
Геодезический сигнал.

Фото 2

Что изучает геодезия

Современная геодезия представляет собой многогранную отрасль, которые складываются в результате научных и учебно-методических отношений, производственных и технологических процессов между частными лицами и юридическими субъектами, государственными учреждениями и различными организациями, занимающимися вопросами, связанными с деятельностью по изучению, использованию земной поверхности Земли в различных направлениях и обязательному геодезическому контролю.

Предметом изучения геодезической науки служит:

  • формы Земли, с периодическими определениями их размеров;
  • физическая поверхность Земли с выполнением на ней измерений;
  • геодинамических процессов, происходящих в земной поверхности;
  • определение действия сил тяжести Земли в разных ее точках;
  • установление точек и систем отсчета, координат для всей территории государства и планеты, требующихся для единого пространственного положения с целью решения системных планетарных задач разностороннего характера;
  • математические методы построения геодезических сетей для формирования единства систем координат на земной поверхности;
  • физические и математические способы геодезических измерений;
  • математических методов обработки полевых измерений и теоретических уравнительных их вычислений.

Основные задачи геодезии

Фото 4

Невозможно представить себе ни одного хозяйствующего субъекта, ни одну область экономики без присутствия и участия в них практической геодезии. По правде сказать, многие из них не подозревают или не знают о такой связи. Главное, что геодезическая отрасль востребована и решает многие практические задачи:

  • создания пунктов геодезических сетей разного уровня тем самым формирую государственную систему координат,
  • исполнения топографических съемок для изыскательских и картографических работ;
  • составления карт и топографических планов;
  • обеспечения геодезических процессов при строительстве объектов материального производства;
  • определения геодезическими способами деформаций грунта, просадок, сдвига фундаментов и крена конструкций сооружений;
  • геодезическо-маркшейдерское обслуживание подземных и открытых горных работ в шахтах и рудниках, карьерах и полигонах;
  • исследования и разведки природных ресурсов и полезных ископаемых;
  • при ведении землеустроительных работ и кадастрового учета;
  • обеспечение космической, воздушной, наземной и морской навигаций всевозможных летательных аппаратов, кораблей и автомобильной техники.
Фото 4

Порядок проведения геодезических работ — 6 основных этапов

При любом строительстве востребованы геодезические исследования. Будь то один дом или целый квартал, или даже город, улица, промышленный комплекс — везде необходимо первоначальное вмешательство специалистов.

При создании проектов инженеры опираются на рельеф местности, зависимость от окружающей инфраструктуры и строение грунта.

Весь комплекс геодезических работ призван расположить объекты строительства в соответствии с утвержденным планом. Именно поэтому геодезисты работают на возводимых сооружениях вплоть до их сдачи в эксплуатацию.

Этап 1. Выбор компании для проведения геодезических работ

Обратите внимание на опыт работы предприятия. Чем дольше компания предлагает свои услуги, тем больше накопленных знаний и навыков по разметке территорий.

У зарекомендовавших себя предприятий имеется пакет услуг, предоставляемых при возведении той или иной конструкции.

Отметьте, каким оборудованием и инструментами пользуются специалисты компании. Современные геодезисты используют цифровые, фотографические и лазерные технологии в определении разметки земельных участков.

Этап 2. Заключение договора и утверждение технического задания

Утверждая проект, посоветуйтесь с архитектором. Он даст дельные советы относительно данных, которые понадобятся для дальнейшей работы. Совместно продумайте и набросайте чертеж предполагаемой стройки — это упростит разработку технических требований для геодезистов.

В зависимости от рельефа, площади и расположения участка геодезическая съемка занимает не более одного дня работы. Для крупных объектов этапы работ определяют, исходя из конкретных запросов клиента.

Договор с инженерно-геодезической компанией заключается либо на определенный срок с четко поставленными задачами, либо включает в себя перечень работ, которые должны быть произведены на определенном этапе стройки.

По окончании договора подрядная компания предоставляет заказчику документацию с закрепленными межевыми знаками, привязкой к государственной геодезической сети и закрепленными границами участка.

Этап 3. Сбор и анализ информации об участке

На этом этапе происходит общая оценка предстоящих изысканий с выездом на место работ. Собираются данные о расположении участка, окружающих территориях и рельефе местности. Дополнительно определяется доступ буровой установки на место проведения работ.

Так же аналитик выбирает инструменты и оборудование, которыми предстоит пользоваться. В зависимости от территории допускаются и погрешности измерений. У каждого инструмента свои допустимые нормы отклонения.

Рассмотрим таблицу погрешности при замерах участка:

Почти все современные геодезические приборы имеют свойства измерять углы, расстояния и уклон поверхности.

Этап 4. Строительное проектирование

Это ряд топографических работ по привязке участка к существующей геодезической сети. Изучение природных условий для размещения проектных объектов, сбор дополнительной информации, создание геодезической основы под строительство.

На практике это означает:

  • построение плана работ;
  • топографическую съемку;
  • перенос опорных точек на местность.

Это начало непосредственных работ на территории. Установка межевых точек, опираясь на которые, специалисты проведут разметку для заливки фундамента. Все геодезические знаки, установленные на строительной территории, сохраняются в неприкосновенности до сдачи объекта.

Этап 5. Разбивочный этап

Итак, мы закрепили ключевые точки на территории. Теперь, отталкиваясь от них, сможем перенести весь проект на земельный участок. При разбивке специалисты пользуются теми же инструментами, что и для топографической съемки, а именно: нивелиры, теодолиты, тахеометры.

Вынос проекта в натуру, то есть непосредственно на земельный участок, включает в себя и разметку инженерных коммуникаций.

Одновременно с разбивкой основных сооружений происходит:

  • подводка канализации и водопровода;
  • подводка отопительной системы;
  • монтаж электрических сетей;
  • проектировка дренажных и вентиляционных систем (в случае, если они не заложены в строительный проект основного комплекса).

По мере разметки осей главных и промежуточных элементов конструкции ведется разработка и подготовка отчетной документации. Составляется оперативный журнал геодезических работ.

В нем указывается:

  • время проведения работ;
  • какие инструменты были использованы;
  • исполнители;
  • исполняемые задания;
  • составленная документация.

Этап 6. Составление отчета о выполненных геодезических работах

По итогу выполненных работ составляется генеральный план объекта. Промежуточными или текущими вспомогательными чертежами сопровождаются все этапы строительства. Они включаются в итоговый план, в качестве дополнительных документов и прилагаются как пояснительная записка.

Все инженерно-строительные работы сопровождаются геодезической съемкой. Эти корректировочные работы геодезистов помогают вовремя исправить допущенные ошибки и контролировать отклонения от строительных норм.
Фото 5

Работа геодезиста

Основные задачи геодезиста:

  1. Подготовить и поддерживать эскизы, карты, отчеты и юридические описания опросов, чтобы описать, сертифицировать и принять на себя ответственность за выполненную работу.
  2. Проверить точность данных обследования, включая измерения и расчеты, проведенные на участках обследования.
  3. Направлять или проводить обследования с целью установления правовых границ для объектов недвижимости на основании юридических документов.
  4. Записывать результаты обследований, в том числе форму, контур, местоположение, высоту и размеры земли или наземных объектов.
  5. Рассчитывать высоту, глубины, относительные положения, свойства линий и другие характеристики местности.
  6. Подготавливать или контролировать подготовки всех данных, диаграмм, графиков, карт, записей и документов, связанных с обследованиями.
  7. Записывать описания обследований границ собственности для использования в документах, договорах аренды или других юридических документах.
  8. Планировать и проводить наземные исследования, предназначенных для установления базовых линий, высот и других геодезических измерений.
  9. Поиск юридических записей, обследований и прав собственности на землю с целью получения информации о границах собственности в районах, подлежащих обследованию.
  10. Согласовывать результаты с работой инженерного и архитектурного персонала, клиентов и других лиц, связанных с проектами.
  11. Настраивать геодезические приборы, чтобы сохранить их точность.
  12. Устанавливать фиксированные точки для использования при создании карт с использованием геодезических и инженерных инструментов.
  13. Определите долготы и широты важных особенностей и границ в районах съемки, используя теодолиты, транзиты, уровни и спутниковые системы глобального позиционирования (GPS).
  14. Обучать помощников и направлять их работу в таких видах деятельности, как проведение опросов или составление карт.
  15. Проводить анализ целей и спецификаций обследования для подготовки предложений по обследованию.
  16. Вычислить геодезические измерения и интерпретировать данные съемки, чтобы определить положение, форму и высоту геоморфологических и топографических объектов.
  17. Разработать критерии для методов и процедур обследования.
  18. Разработка критериев для проектирования и модификации инструментов обследования.
  19. Провести исследование методов съемки и картографирования, используя знания методов составления фотограмметрической карты и электронной обработки данных.
  20. Найти и отметить участки, выбранные для геофизических работ, таких как поиск нефти или других минеральных продуктов.
  21. Обследовать водоемы, чтобы определить судоходные каналы и обеспечить данные для строительства волнорезов, пирсов и других морских сооружений.
  22. Установить прямые аэрофотосъемки указанных географических районов.
  23. Определить спецификации для фотографического оборудования, что будет использоваться для аэрофотосъемки, а также высоту, с которой нужно фотографировать местность.

Где заказать качественные геодезические услуги — обзор ТОП-3 геодезических компаний

Фото 7

С развитием геодезии и возрастающим спросом на исследования земельных участков ширится рост компаний, предоставляющих услуги геодезических изысканий.

Мы составили обзор 3 наиболее надёжных в РФ геодезических организаций.

1) Земли-Про

Компания оказывает услуги по проведению разнообразных геодезических работ. Сотрудники организации готовы в кратчайшие сроки проделать необходимые изыскания и оформить пакет документов, характеризующий ваш земельный надел.

Геодезисты компании готовы взяться за решение самых нестандартных задач и дают гарантию на всю проделанную работу.

Если вы готовы стать клиентом компании, то вам предоставят несколько вариантов сотрудничества на выбор. Сравнив условия и цены, вы выберете привлекающую вас программу услуг. Специалисты «Земли-Про» подскажут, какие еще необходимы документы для оформления строительства, и исправят технические ошибки в уже имеющихся планах земельных участков.

2) Накор-К

Предприятие ведет свою деятельность на территории всей России. Основанная в 2000 году компания ответственно и качественно подходит к выполнению различного рода задач по профилю своей отрасли.

Практикуются виды деятельности:

  • инженерные и геодезические изыскания;
  • геодезическое сопровождение строительства;
  • контроль за деформацией конструкций в ходе возведения конструкций;
  • прочие изыскания.

Накор-К — это сложившаяся команда профессионалов, которая предлагает широкий спектр услуг, комплексных исследований и уникальных решений в области геодезии.

3) Геодезическая компания «Будущее»

Молодая амбициозная компания ориентирует свою деятельность на выполнение комплекса геодезических изысканий в строительстве и промышленности. Эксперты компании — выпускники ведущих российских высших учебных заведений. Высококвалифицированные специалисты работают как на всей территории России, так и за ее пределами.

Конкурентные преимущества компании состоят в использовании современных технологий, высокоточных инструментов и освоении новых методов обработки данных. Результаты работы предоставляются для клиентов как в классическом бумажном исполнении, так и в электронном виде.

Вопросы и ответы

Источники

Использованные источники информации.

  • https://www.finanbi.ru/geodeziya-887
  • https://geography-a.ru/menu-4-6/725-geodeziya.html
  • https://geostart.ru/post/311
  • https://hiterbober.ru/realty/chto-takoe-geodeziya.html
0 из 5. Оценок: 0.

Комментарии (0)

Поделитесь своим мнением о статье.

Ещё никто не оставил комментария, вы будете первым.


Написать комментарий